東京大学理学部

放射線取扱者講習会 (一般講習会)

放射線の人体への影響

2025 年度(令和7年度)

講習会資料

講習会の配布資料

- ·放射線取扱者講習会(一般講習会)資料
- ·放射線取扱者講習会(一般講習会)資料:英語版
- ・理学部放射線障害予防規程(令和5年9月20日 改正)
- ・下部規定(3つ) + 理学系研究科エックス線装置等管理ルール
- ・下部規定「放射線測定に関する維持管理要領(令和5年8月30日 制定)」

下部規定のファイルについては、閲覧を理学部内限定とします。 理学部内部のネットワークから接続、またはVPN接続してください。

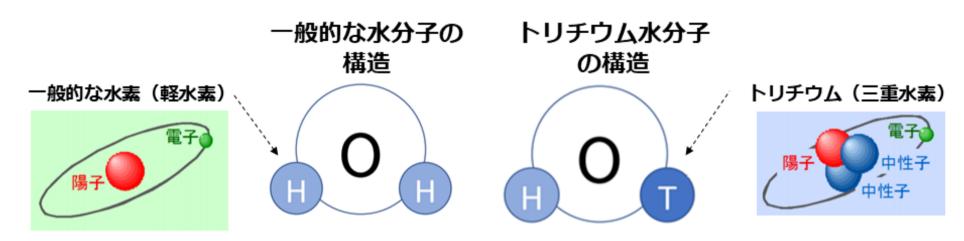
(理学部の建物内でも無線ネットワークの場合はVPN接続が必要です。)

講習会のスライド

- ・鳥居(理学部・放射線管理の概要)
- ・谷川(講習会資料の説明、トピック)
- ・戸澤(放射線の人体影響)
- ・鳥居(加速器・放射光施設の安全利用、密封線源・エックス線装置の安全取扱)

参考資料

- ・東京大学放射線取扱者再教育資料 No.43 (2025) 編集:環境安全本部
- ・東京大学放射線取扱者再教育資料 No.42 (2024) 編集:環境安全本部
- ·東京大学放射線取扱者再教育資料 No.41 (2023) 編集:環境安全本部
- ・東京大学放射線取扱者再教育資料 No.40(2022) 編集:環境安全本部
- ・東京大学放射線取扱者再教育資料 No.39(2021) 編集:環境安全本部
- ·東京大学放射線取扱者再教育資料 No.38 (2020) 編集:環境安全本部


2025

放射線取扱者再教育訓練資料 No.43 (2025)

- 1. トリチウムの特徴とその人体及び環境への影響 柿内秀樹
- 3 2. さまざまな加速器の特徴と利用上の留意点 山下真一・坂上和之
- 6 3. 核燃料物質の特徴とその法令上の位置づけ 飯塚裕幸
- 8 4. 研究用エックス線装置の種類と構造 飯尾智
- 1 1 5. 東大放射線取扱者登録管理システム UTRadMS の概要と利用上の留意点 久木田沙斗里

トリチウムの性質

トリチウムは「三重水素」と呼ばれる水素の放射性同位体で、身の回りでは水分子に 含まれる形で存在するものが多い。トリチウムが出すβ線のエネルギーは小さく(最 大 18.6keV)、紙一枚で遮蔽可能である。

一般的な水素のみから 構成される水分子

 H_2O

一般的な水素とトリチウムから 構成される水分子

HTO

物理学的半減期:12.3年

放出β線エネルギー: 平均 5.7 keV

(最大 18.6 keV)

出典:経済産業省資源エネルギー庁「廃炉の大切な話2018」、

トリチウム水タスクフォース「トリチウム水タスクフォース報告書」(2016年)、

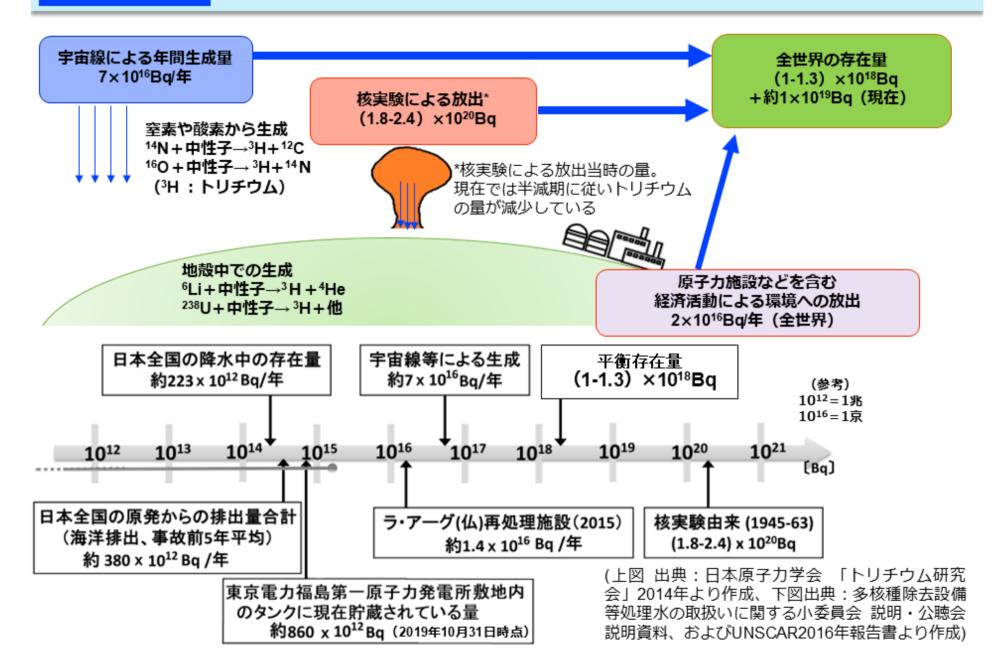
多核種除去設備等処理水の取扱いに関する小委員会事務局「トリチウムの性質等について(案)」より作成

原子力災害

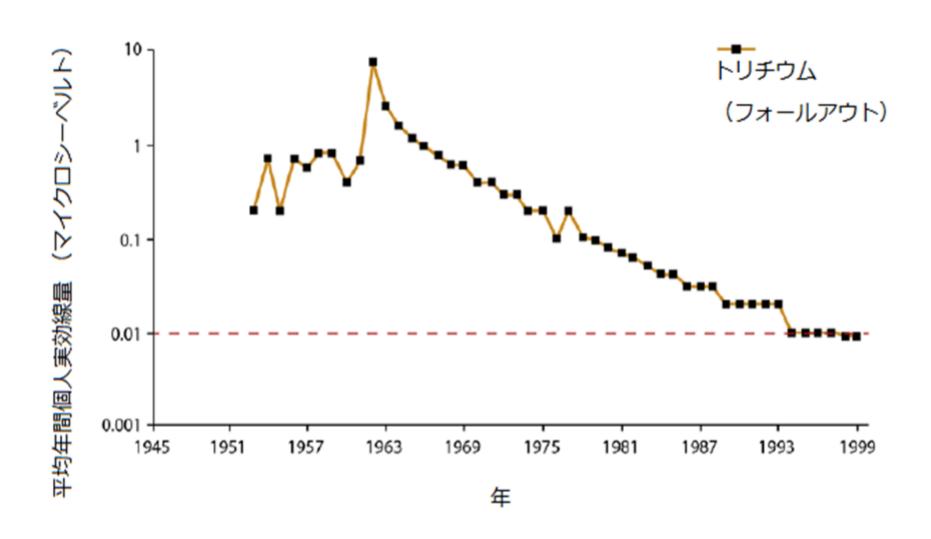
原発事故由来の放射性物質

	H-3 トリチウム	Sr-90 ストロンチウム 90	I-131 ョウ素131	Cs-134 セシウム134	Cs-137 セシウム137	Pu-239 プルトニウム 239
出す放射線 の種類	β	β	β, γ	β, γ	β, γ	α, γ
生物学的 半減期	10日 *1 *2	50年*3	80日* ²	70日~ 100日* ⁴	70日~ 100日* ³	肝臓:20年 *5
物理学的 半減期	12.3年	29年	8日	2.1年	30年	24,000年
実効半減期 (生物学的半減期と 物理学的半減期から計算)	10日	18年	7日	64日 ~88日	70日 ~99日	20年
蓄積する 器官・組織	全身	骨	甲状腺	全身	全身	肝臓、骨

実効半減期: (関連ページ上巻P27「内部被ばくと放射性物質」)

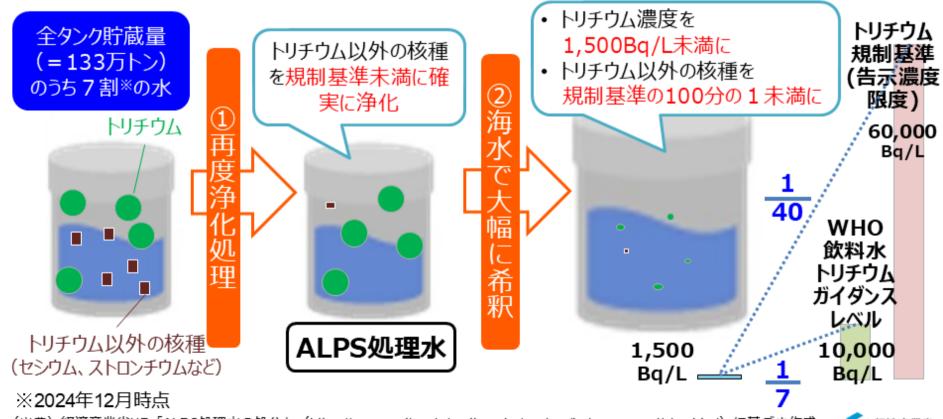

実効半減期は、生物学的半減期の表中に記載した蓄積する器官・組織の数値から計算。

*1:トリチウム水、*2:ICRP Publication 78、*3:JAEA技術解説,2011年11月、*4:セシウム137と同じと仮定、


*5: ICRP Publication 48

身の回りの 放射線

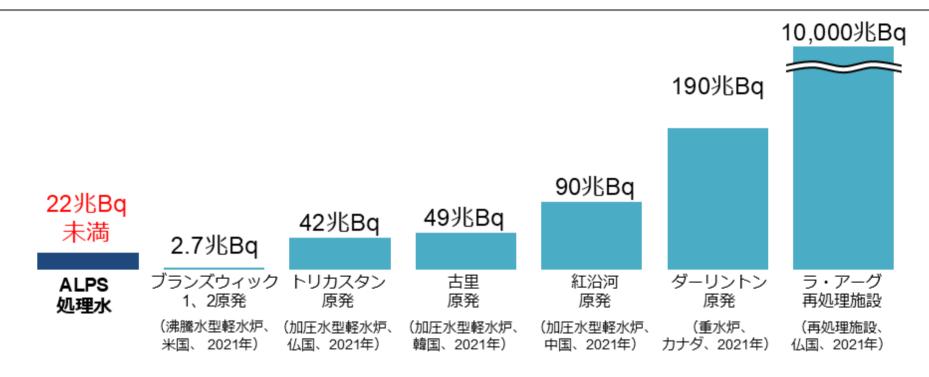
トリチウムの環境中での存在量


トリチウムの放射性降下物の経時的推移

出典: UNSCEAR2016年報告書Annex C-Biological effects of selected internal emitters-Tritium

タンクに保管されている水の処理方法

- ①トリチウム以外の核種の再浄化、②海水により100倍以上に希釈することにより、処理水に含まれる放射性物質の放射能濃度を、規制基準を大幅に下回るレベルにする。
- その上で、東京電力福島第一原子力発電所から海洋に放出。放出前後の状況を監視(国際機関など第三者が評価・検証)。



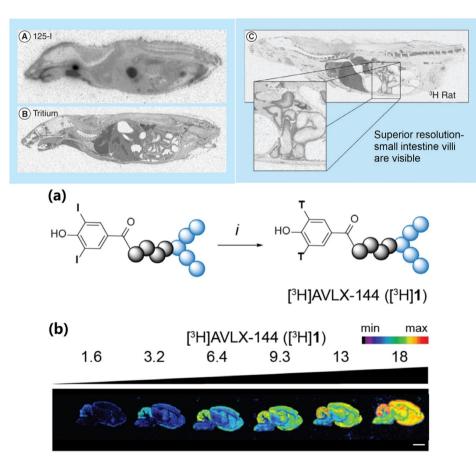
(出典) 経済産業省HP「ALPS処理水の処分」(https://www.meti.go.jp/earthquake/nuclear/hairo osensui/alps.html)に基づき作成

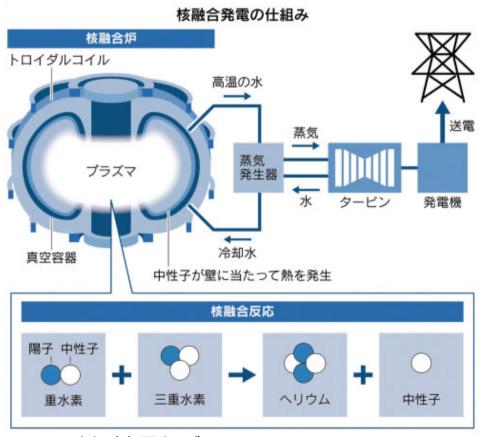
トリチウムの年間処分量 ~海外との比較~

- 「ALPS処理水」の処分時のトリチウムの総量の水準は、年間22兆ベクレルを下回るレベル(事故前の管理目標)。
- トリチウムは、国内外の原子力発電所・再処理施設においても、各国の法令を遵守した上で、液体廃棄物として海洋や河川等へ、また、気体廃棄物として大気中に排出されている。

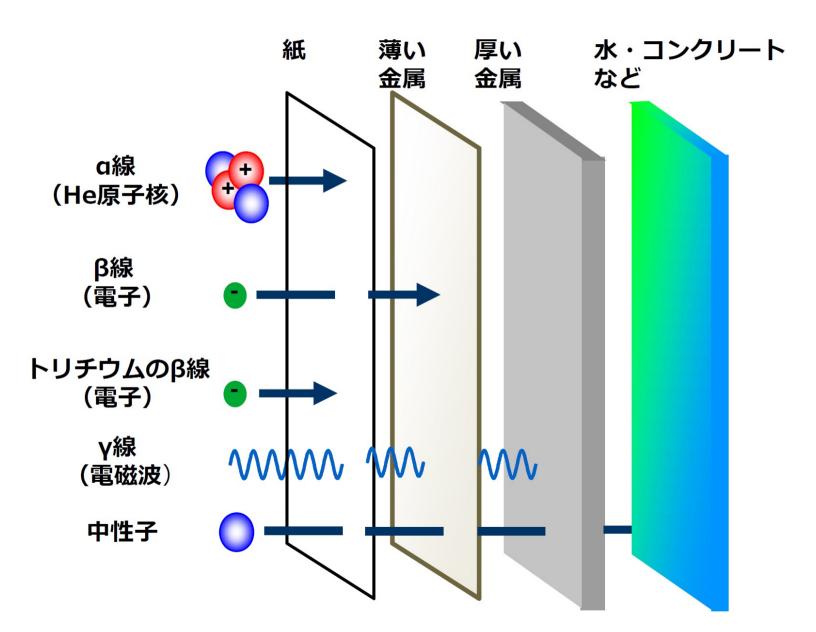
ALPS処理水と世界の原子力施設におけるトリチウム(液体)の年間処分量

(出典) 経済産業省HP「ALPS処理水資料集」(https://www.meti.go.jp/earthquake/nuclear/hairo_osensui/pdf/alps_02.pdf)に基づき作成

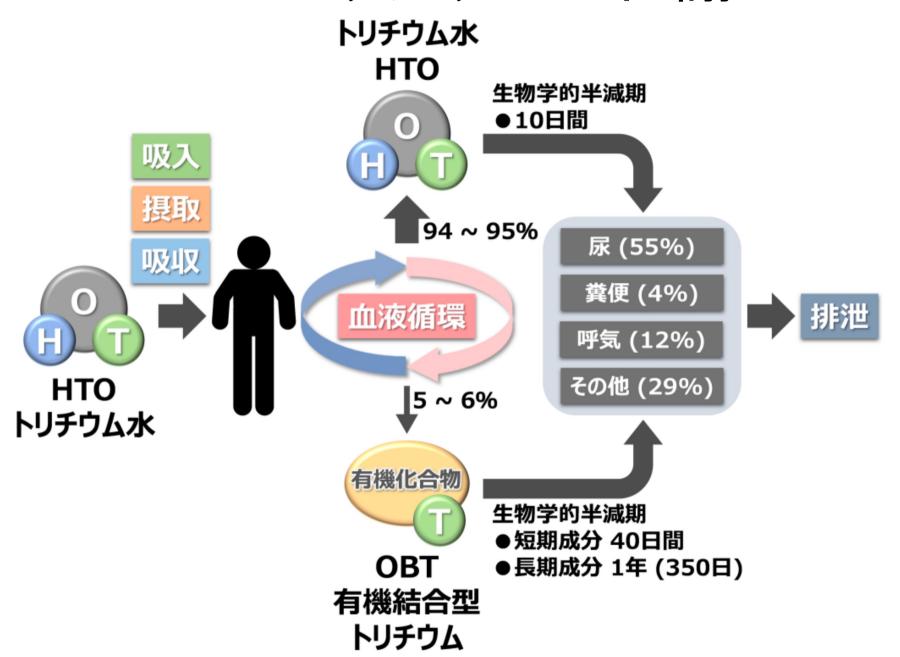



Wikipediaより引用

City Labs website (https://citylabs.net) より引用



Teng et al., Molecules 2024

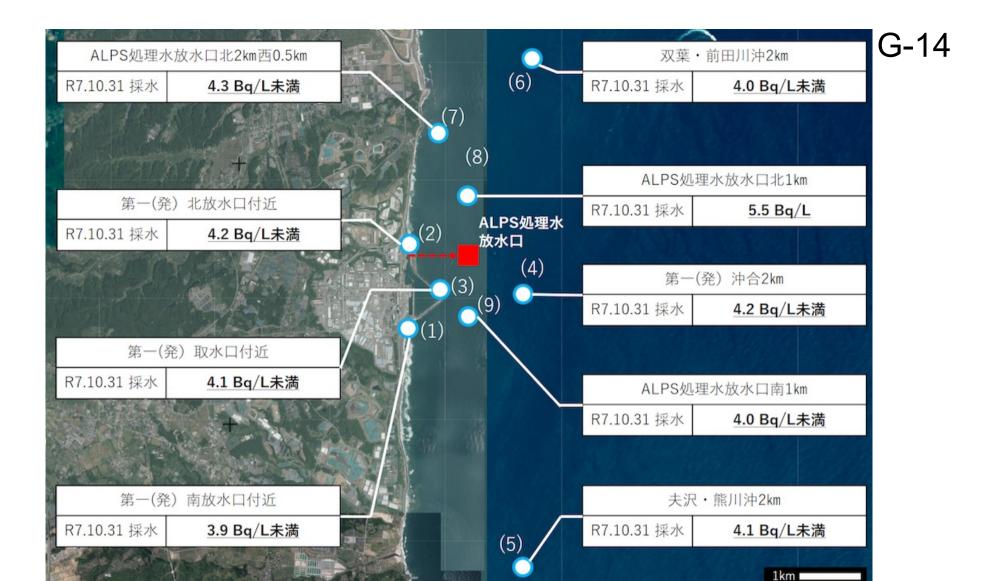


日本経済新聞ウェブサイト (https://www.nikkei.com) より引用

放射線の透過力

ヒトでのトリチウムの代謝

実効線量への換算係数


預託実効線量係数(µSv/Bq)(経口摂取の場合)

	ストロンチウム 90	ヨウ素 131	セシウム 134	セシウム 137	プルトニウム 239	トリチウム※
3か月児	0.23	0.18	0.026	0.021	4.2	0.000064
1歳児	0.073	0.18	0.016	0.012	0.42	0.000048
5歳児	0.047	0.10	0.013	0.0096	0.33	0.000031
10歳児	0.06	0.052	0.014	0.01	0.27	0.000023
15歳児	0.08	0.034	0.019	0.013	0.24	0.000018
成人	0.028	0.022	0.019	0.013	0.25	0.000018

μSv/Bq: マイクロシーベルト/ベクレル

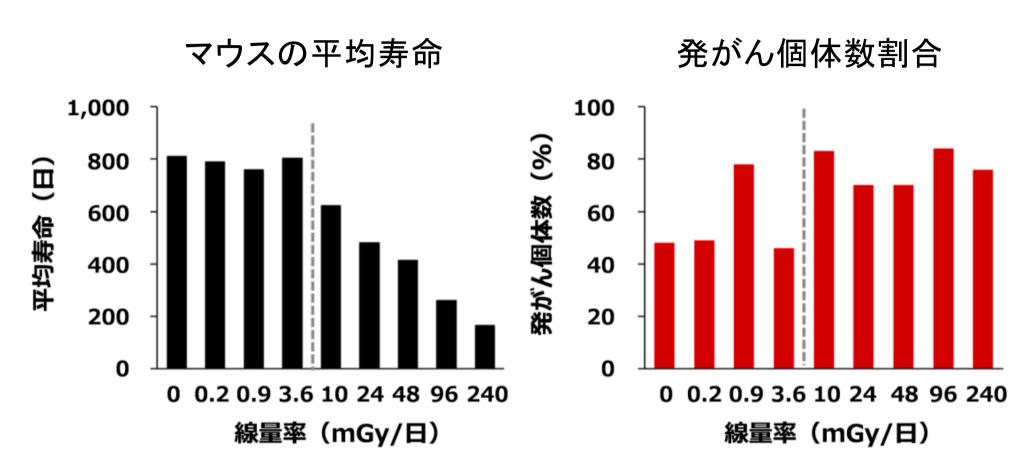
※自由水型トリチウム

出典:国際放射線防護委員会 (ICRP), ICRP Publication 119, Compendium of Dose Coefficients based on ICRP Publication 60, 2012より作成

ふくしま復興情報ポータルサイト(https://www.pref.fukushima.lg.jp/site/portal/)より引用

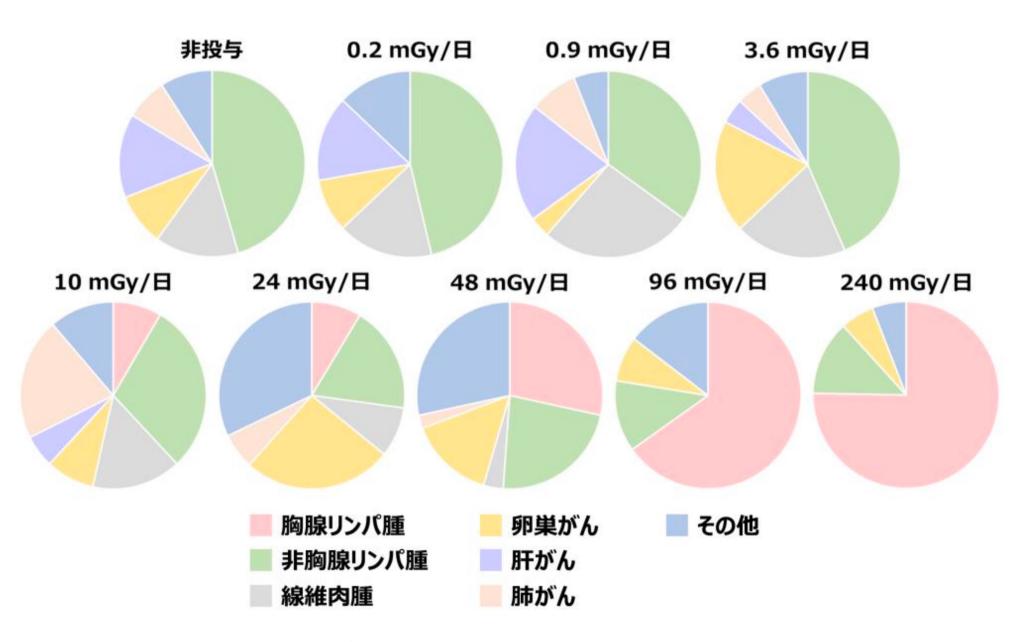
成人がこの周辺の海水を毎日 2L ずつ飲んだ場合、トリチウム水による 1 年間の被ばく量は、 5.5 Bq/L x 2 L/day x 365 days x 0.000018 µSv/Bq = 0.07227 µSv/y ≒ 0.000072 mSv/y

自然からの被ばく線量の内訳(日本人)


G-15

被ばくの種類	線源の内訳	実効線量 (ミリシーベルト/年)
外部被ばく	宇宙線	0.3
71 HPIXIO \	大地放射線	0.33
内部被ばく (吸入摂取)	ラドン222(屋内、屋外)	0.37
	ラドン220(トロン)(屋内、屋外)	0.09
	喫煙(鉛210、ポロニウム210等)	0.006 (%)
	その他 (ウラン等)	0.006
	主に鉛210、ポロニウム210	0.80
内部被ばく	トリチウム	0.0000049
(経口摂取)	炭素14	0.014 0.0049 μSv/
	カリウム40	0.18
特殊環境にお	温泉、地下環境などによる被ばく	0.005
ける被ばく	航空機利用に伴う被ばく	0.008
	合 計	2.1

(※) 国民一人当たりの換算値。喫煙者の被ばく線量は0.040ミリシーベルト/年。


出典: (公財)原子力安全研究協会「生活環境放射線(国民線量の算定)第3版 増補版」(2024年)より作成

トリチウム水を摂取したマウスの平均寿命と 発がん個体数割合

3.6 ~ 10 mGy/d のあたりにしきい線量の存在が推定される

G-17 トリチウム水を摂取したマウスに発症したがんの種類

日本放射線影響学会ウェブサイト(https://www.jrrs.org)「トリチウムとその健康影響に関する解説」より引用

ヒトのトリチウム摂取例

症例	年齢 (性)	取扱った ³ H 量	被ばく線量 /期間	臨床症状	転帰	尿中 ³ H 量 (Bq/mL)
A1	60 (男)	2.8 x 10 ¹⁴ Bq/7.4年	3-6 Sv /7.4年	正色素性貧血→ 汎血球減少症	死亡	1.9-41 x 10 ³
A2	28 (女)	1.4 x 10 ¹⁴ (?) Bq/6.3年	1.2-2.8 Sv /6.4年	正色素性貧血	生存	0.07-6.8 x 10 ³
A3	61 (男)	-	-	無症状	生存	0.37-3.3 x 10 ³
A4	35	-	-	無症状	生存	0.04-1.8 x 10 ³
B1	-	-	-	-	生存	-
B2		3.7-37 x 10 ¹³ Bq/3年	10-20 Sv /3年	高色素性貧血→ 難治性汎血球減 少症	死亡	2-4.3 x 10 ³
В3	-	-	-	-	生存	-

[出所] Seelentag, 1973; 平嶋, 1988 原子力百科事典 ATOMICA より引用