Radiation Safety Course (School of Science, The University of Tokyo)

Biological Effects of Radiation to Human Body

FY2024

G-2

Modern Classification System for Solar Flares

Classification	Peak flux range [W/m ²]		
Α	< 10 ⁻⁷		
В	10 ⁻⁷ – 10 ⁻⁶		
С	10 ⁻⁶ – 10 ⁻⁵		
Μ	10 ⁻⁵ – 10 ⁻⁴		
Х	> 10 ⁻⁴		

Cited from Wikipedia

According to the peak flux in watts per square metre (W/m²) of soft X-rays with wavelengths 0.1 to 0.8 nanometres, as measured by GOES satellites in geosynchronous orbit

On average, X-class flares occur 2 or 3 times a year. M-class, 20 – 30 times and C-class, about 300 times.

2025年頃の太陽極大期に対して高まる主要国の警戒 G-4

太陽活動(太陽の黒点数)は、約11年周期で活発と静穏を繰り返している。活発時には各地で被害が発生
次回のピークは2025年頃に到来すると予想され、主要国で警戒が高まっている。

出典:ベルギー王立天文台のウェブサイトより。図を一部加工

https://www2.nict.go.jp/spe/benchmark/ https://swc.nict.go.jp/knowledge/solar.html https://wwwbis.sidc.be/silso/monthlyssnplot

Meeting of Study Group on the Advancement of Space Weather Forecasting, The Ministry of Internal Affairs and Communications 総務省 宇宙天気予報の高度化の在り方に関する検討会(第1回)配布資料 宇天-1-2より引用

New Prediction by NOAA/SWPC (October 2023)

Experimental Solar Cycle 25 Prediction

Cited from NOAA/SWPC website

The next peak period will be between January and October 2024.

太陽の異常活動がもたらす障害

● 太陽の異常活動によって、航空無線、電力網、通信・放送・測位システムに誤動作を発生させるおそれがある。
● このため、情報通信研究機構(NICT)では、社会インフラの安定運用を確保するため、太陽活動を観測・分析し、

Home	Report	Current Status	s Forecast	User guide	Link
Forecast			2024/0	04/19 06:00 UT ~ 2024	/04/20 05:59 U ⁻
Solar flare	Solar proton	Geomagnetic disturbance Rbel	adiation t electron	neric Dellinger m phenomenon	Sporadic E layer
Active		Active	Low		
	Quiet		Quie	et Moderate	Active
LV.3		Lv.2		Lv.2	LV.3
	Lv.1		Lv.1 Lv.1		
Today's space we	eather			2024/04/19 (00:00 UT Update
Solar activity was	s moderate and it is	s expected to be moder	ate on 19 Apr.Geomagr	netic activity in Japan was	quiet level and

SDO | Solar Dynamics Observatory ♂ Cited from Space Weather Forecast (https://swc.nict.go.jp)

G-11 Space Radiation Environment Surrounding the Earth

Cited from JISCARD website (http://www.jiscard.jp/index.shtml)

G-12 **平常時(2005/1/20)** Under Normal Conditions

世界中の宇宙放射線による被ばく線量率 (µSv/h): WASAVIESにより算出 Exposure dose rates due to cosmic rays around the world : Calculated by WASAVIES

Meeting of Study Group on the Advancement of Space Weather Forecasting, The Ministry of Internal Affairs and Communications

G-15 Radiation **Comparison of Exposure Doses per Year** around Us

Exposure in daily life (annual)

* Total amount of exposure due to cosmic rays and from the use of aircraft

Sources: Prepared based on the 2008 UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) Report; and "Environmental Radiation in Daily Life (Calculation of National Doses), ver. 3" (2020), Nuclear Safety Research Association

G-16 **Comparison of Exposure Doses per Hour**

Sources: Prepared based on "Radiation Exposure Management," the website of the JAXA Space Station Kibo PR Center, 2013; "Japanese Internet System for Calculation of Aviation Route Doses (JISCARD)," the website of the National Institute of Radiological Sciences; "Research on Ambient Gamma-ray Doses in the Environment," the website of the National Institute of Radiological Sciences; Furuno, p.25-33 of the 51st report of the Balneological Laboratory, Okayama University, 1981; and Nuclear Regulation Authority Radiation Monitoring Information (range of previous average values at monitoring posts)

Effects on Deterministic Effects (Tissue Reactions) and G-17 Human Body Stochastic Effects

Deterministic effects (tissue reactions)

(Hair loss, cataract, skin injury, etc.)

When a number of people were exposed to the same dose of radiation and certain symptoms appear in 1% of them, said dose is considered to be the threshold dose. (2007 Recommendations of the International Commission on Radiological Protection (ICRP))

Stochastic effects

(Cancer, leukemia, hereditary effects, etc.)

Effects of radiation exposure under certain doses are not clear because effects of other cancer-promoting factors such as smoking and drinking habits are too large. However, the ICRP specifies the standards for radiological protection for such low-dose exposures, assuming that they may have some effects as well.

Effects of Long-Term Low-Dose Exposure G-18

Carcinogenesis among residents in high natural radiation area in India

mSv: millisieverts

Carcinogenesis due to Chronic Exposure

Dose Measurement and Calculation Measurement Adioactivity G-19

- Ambient dose rate shows measured amount of γ-rays in the air. Indicated in microsieverts per hour (µSv/h)
- Fallout density is the amount of radioactive materials that have deposited (or descended) per unit area in a certain period of time. e.g., becquerels per squared meter (Bq/m²)

Mechanism of Causing Effects on Human Body Lapse of Time after Exposure and Effects

G-21 Risks of Cancer Death from Low-Dose Exposure

